
®

Neal Goldstein

President
Neal Goldstein Design, Inc.

®

Tools

Design Elements of Object
Programming

®

A Synthesis of Natural
Perception and Software

Development

Copyright

• © Copyright 1990 Neal Goldstein
Design Inc. All rights reserved.

• This material is copyrighted by
Neal Goldstein Design, Inc. and may
be used only with written permission
of Neal Goldstein Design, Inc.

®

Introduction

The National Object
Programming Test

• Can you answer true to the following:
– Users love me
– I am on time and within budget
– I look forward to good enhancement

and extension requests

Why Object Programming?

• It is more natural
– The computer representation more

closely parallels the real world
– We naturally think in terms

of objects
• Easier extension and enhancement
• Efficiency

It Is More Natural

• Capitalizes on our natural ability to
– Makedistinctions

- We perceive the world as objects
– Makedistinctions within distinctions

- Wholes and parts
– Makedistinctions about distinctions

- Classification and types

Easier Extension and Enhancement

• Implementation can be changed with
minimal side effects
– Enhance

- Improve existing functionality
– Extend

- Add new functionality

Efficiency

• Reuse existing code through
– Inheritance
– Using other objects

Software

• Good software must be responsive
to current and future needs and
requirements

• Good software must meet real
world time and budget constraints

• Software as solution
• Software as simulation

Doing This Requires

• Software that is designed to be
extensible, enhanceable, and repairable

• A supporting software architecture and
development methodology

We Need

• Problem analysis <=> program
architecture tightly coupled

• A development process that
supports this
– Interactive
– Iterative
– Incremental

What is Wrong with this Picture?

Leave the waterfalls in Yosemite

Analyze

Design

Code

Test

DebugMaintain

Object-Based Design

• Does not make the usual
distinctions of analysis, design, and
implementation

• Instead
– A model of a software architecture
– A development methodology to

build an instance of that model in
a specific context

Object-Based Design

Map

Natural World

Context

User Technologist

Software

Content
Container

Usage
Platform

Map

Program
Model

Execution
Model

Requirements

Target
Model

Object-Based Architecture

• Natural world model
• Mapped onto a computer

– Execution model
– World of objects

• Abstracted into a program
– Program model
– World of classes and inheritance

Object-Based Development

• A new way to develop software
– Approach
– Implementation

The Development Approach

• An iterative and interactive process
– Designs understandable by users
– Rapid prototyping
– Constant refinement

• Development and use of class libraries
• You can’t get it right the first time

– Or the first time right the first time

The Development Implementation

• Development is not linear
– Modeling the natural world
– Mapping of the model onto an

implementation
- Coding and program and

class design
• Design directing implementation
• Implementation validating design

®

Modeling

The Parts

Models Explain

• A distinction
• Behavior

– Goal directed
– Sum of the parts

A Model

• A set of structural elements
• Rules about the relationship of

elements to each other, and to the
whole of which they are a part

• Has boundaries
• Has constraints
• Explains a set of behaviors
• Can be abstract or concrete

Models Explain

• Externally
– What the system does
– What you want the system to do

• Internally
– How it does it

The Reference Frame

• The context
– The bounding of the explanation

• The behavior set to understand
• The constraints

– Goals are a kind of constraint

Distinctions – the Elements

• The world is filled with objects
– We perceive the world around

us as made up of different types
of separate things

• A natural world object is anything
we distinguish from something else
– Tangible
– Intangible

Natural World Objects

• Have attributes – that can be given values
– A person has a name, hair color …

• Have behaviors – the things that objects do
– People breathe, talk, work …

• Communicate with each other
– Tell stories, smile, hug …

• Can have parts
• Are categorized

Stability

• What tends to change
– Functions
– Sequencing of functions
– User interface
– Data
– Interfaces between system components

• Least likely to change
The actual objects in the problem space

A Model Based on Objects

• Results in a model that is likely to
be as stable as possible over time

Relationships

• Intersecting planes
– Parts and wholes
– Categories and members

• Collaborator

Distinctions Within Distinctions

• The world is full of things
– Things are made of other things
– Things are parts of things

Wholes and Parts

• Divide into parts (model)
– Wheels, engine, transmission

• Assemble into wholes
– Drive train, car
– Are more than the sum of their parts

• Not necessarily a single tree structure

Wholes and Containers

• Wholes
– Are greater than the sum

of their parts
• Containers

– Contain wholes

Whole/Part Relationship

Accounting

Company

Sales

A/PA/R
Decreasing
Complexity

Distinctions About Distinctions

• The world is full of similar units
– The same broad features recurring
– Differing in detail

• People group together elements
– As members of a category
– Distinguish that category from others

• Classes can be hierarchical
– Flower is a plant

Class Membership

• Something is part of a class
– If it shares key features of that class

- We classify a rose as a flower
• A member is an instance of the class

Categorization

• Derived
• Associate
• Prototype

Derived

• Each derived type completely contains
its base

Associate

• If A is related to B, and B is related
to C; A, B, and C are all members
of the same class

Prototype

• All members share a set
of key elements

Abstraction

• We use abstraction to hide detail
– Treat similar things as the same
– Hourly or salaried are employees

• Abstract based on commonality
– Roses and orchids are flowers

Derivation

• We use derivation to add detail
– Treat unique things as different
– Employees are salaried or hourly

• Derive specific instances based on type
– Flowers can be roses or orchids or…

Class/Member Relationship

Flower

Plant

Rose

Vegetable

Orchid

Increasing
Complexity

Collaborator

• There are, and needs to be,
connections between elements

• Elements request other elements
to do something
– Ask a mechanic to repair your car

• Elements respond to a request
– In response to a bill you send

a check

Collaborator Relationship

Mechanic

Bank Supplier

Customer

Wholes, Members, Collaborators

• A whole “has-a”
– A house has a door

• A member “is-a”
– A bungalow is a house

• A collaborator “does”
– The mechanic does the

requested repair

®

Modeling

Construction

Building a Model

• Define the reference frame
• Select the objects
• Determine abstraction levels

The Reference Frame

• The context
– The bounding of the explanation

• The behavior set to understand
• The constraints

– Goals are a kind of constraint
• Different slices of the same pie

Building Models

• We perceive the world as objects
– There are multiple overlapping sets

• A model defines a decomposition set
• Models are built

– Top-down
– Bottom-up

Submodels

• To build a model we may group together
related parts (abstractions) as submodels
– The “same” object may appear

in multiple submodels
- Usually, a different “type”

• With behaviors (and goals)
– Processes in a business
– Consumer/supplier

Select the Objects

• How?

Natural World Objects

• Have attributes that can be given values
– A person has a name, hair color…

• Have behaviors – the things that objects do
– People breathe, talk, work…

• Communicate with each other
– Tell stories, smile, hug…

• Can have parts
• Are categorized

Defining the Elements

• Name
– Noun

• Behaviors
– Requested to do

- Supporting behaviors
– Requests to have done

- Connections to other objects

Top-Down

• Decompose from a “system”
– The parts (at an abstraction level)

- “Concrete”
• Managers, programmers, clerks

- “Abstract”
• Employee

– The collaborations
- Who requires what from whom

Results In

• A system
– Finance

• Elements
– At an abstraction level

• Collaborations

Bottom-Up

• Compose from “parts”
– Parts, abstractions, and collaborations

- Objects, classes, polymorphism
– Understand abstractions

- Inheritance is an implementation strategy
– Build wholes

- Knowledge limitation strategies
– Refine collaborations

Results In

• A system
– Object-Based Design

• Elements
– At an abstraction level

• Collaborations

Define Collaborator Relationships

• What this object needs to do
• What this object needs to have done
• What objects this object

creates/destroys

(Sub)Model (Decomposition) Rules

• All subtypes must be non-related
– Don’t include an element and

its base (single logical level rule)
• A type can appear only once in a

recomposition
• At a given level, each type must be

the same kind of type
• A physical instance can appear

only once

Simple or Complex Models

• Simple models have a single behavior
set or are a single decomposition
– Payroll

• Complex models have multiple goals
or contain multiple models
– Finance–A/R, A/P, Payroll

(Sub)Models May Share Elements

• But the elements can be of
different types
– Employee object in payroll
– Employee object in personnel

planning

Two Models May Be Required

Implement

What is

What needs
to be

“Good” Models

• Complete and correct
– Explains all that you know to be true
– Contains all three sets of relationships

• Consistent
– Correct distinction between part,

type, and collaboration

®

Object-Based Software
Architecture
An Introduction

Object-Based Application
Architecture

Execution Model

Program Model

Application
Content

Platform

User Interface

Platform
Model

User
Interface

Model

Simulation
Model

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

INTERFACE

C
O
N
T
A
I
N
E
R

Object-Based Program Architecture

• Execution model
– The world of objects
– Wholes and parts

• Program model
– The world of classes
– Types and subtypes

• Structure
– The world of messages
– Collaborators

Development Process

Natural World

Execution Model

Program Model

Specify
Generalize

®

The Execution Model

The Execution Model

• Based on the natural world
– Minimizes natural world abstractions
– Software changes isomorphic with

real world changes
• Based on things that stay

more constant
• Parts of wholes

The Executing Program

• Is the implementation of a solution model
• Program objects

– To represent the natural world model
- Objects necessary to take into

account collaborator relationships
– Needed for automation
– Required for platform implementation

Program Objects

• Objects behave to
“solve a problem” by
– Carrying out their responsibilities
– Processing their own data
– Sending messages to other objects

• An object is known to its system
– By its (public) protocol or messages

Defining Objects

• Start with the system model objects
– Reorganize

- Connect and isolate
– Generalize and specify
– Decompose and compose

- Logically decompose into
the smallest parts

Single Purpose Decomposition

• Provide and require specifically
defined services

• Highly specialized classes and
methods/member functions

• Small method/member function sizes
– Small numbers of arguments

• Use collaborators
– To perform common tasks

Natural World Structure

• Accountability and structure stay the same
• Performance pushed down to data owner
• It is an ideal world

– The payroll department is accountable
– The EmployeeObject generates

its own check
– The CheckObject will write itself

We Code

• Build objects

Intersecting Planes

Engine Drive Train Wheels

Class

Element Object

System

Car

Vehicle

®

The Program Model

The Program Model

• A transformation of the natural world
• A hierarchy of derived types
• Takes advantage of object-based

software engineering

Distinctions About Distinctions

• The world is full of similar units
– The same broad features reoccurring
– Differing in detail

• People group together elements
– As members of a category
– Distinguish that category from others

• Classes can be hierarchical
– Flower is a plant

Class Membership

• Something is part of a class
– If it shares key features of that class

- We classify a rose as a flower
• Categorization

– Derived
– Associate
– Prototype

• A member is an instance of the class

In a Company

• Classify the people as employees
– Subclassify them as

- Exempt and non-exempt
• Further subclassify them as

- Full time and part time

Derivation

• A class can be derived from
an existing one
– Inheriting

- Data and functions
– Adding

- Additional data and functions
– Overriding

- Existing functions

Subclasses or Derived Types are
Based on Differences

• Only new data items and new or
different behavior need be defined

• The higher you go in the hierarchy
– The more abstract (it should be)

- Plant is more abstract than rose
• Derived from one or more bases

Creating a Class/Type/Category

• Based on commonalities
of behavior and data
– Separate what is common to a class

- SalariedEmployee and
HourlyEmployee share
the idea of Employee

Creating a Class/Type (Category)

• The world is full of similar units
– The same broad features reoccur

• Start with some instances (or classes)
– Circle, square, rectangle

• What do they have in common?
– Can be drawn, dragged, resized

• End with the notion of a class
– Shape

Deriving a Type or Instance

• The world is full of similar units
– But differing in detail

• Start with a class
– Employee

• Derive instances (specific kinds) of
Employees
– HourlyEmployee, SalariedEmployee

• Merging with the world of objects
– Concrete classes become/are objects

Further Decompose and Compose

• Divide into parts (model)
– Wheels, engine, transmission

• Assemble into wholes or composites
– Drive train, car

• Components as convenience in class
• Components are new models

Classes in the Program Model

• A way to share member
functions/methods
– Same function code is used

for each instance
• A way to factor code

– All appointments are a kind of event
• A way to abstract type

– Implement polymorphism

Class or Object

• People understand there is
a difference between
– The class of something
– The thing itself (an instance)

• Child is a subclass of person
– Sarah and Evan are my children

Classes Are Templates for Objects

• Define the variables
– State or representation

• Define the messages (public interface)
– The object will respond to

• Define the messages
(non-public interface)
– Supporting functionality

• Define accessibility
– Member functions and data members

Define Requestor-Responder
Relationships

• Address appropriate level
of abstraction

®

Program Development

The Program Design Process

• Start with the natural
world/execution objects

• Design classes
– Build types from instances
– Derive instances from types

• Build new classes or use existing ones
• Recursively reapply the process

The Program Architecture

• Made up of class hierarchies
– That add specific behavior

• Made up of class hierarchies
– With concrete classes

that become objects
• A structure

– Collaborator relationships
• Transformed at execution

– Into a reflection of the natural world

Defining a Class or Object

• Define the public interface
– The object’s responsibilities
– The required information

• Define the non-public interface
– Supporting functionality, data

into information
• There is a class/object architecture

Class Design

• Recursively
– Generalizing and specifying
– Decomposing and composing

• The “rules” of objects apply

Building Types, Deriving Subtypes

• Commonality between objects and classes
– Create an abstract classes
– Maintain the relationship rules

• Uniqueness
– Create a derived class
– Maintain the relationship rules

Decomposing and Composing

• Reducing to smallest functional units
• Making wholes

Intersecting Planes

Engine Drive Train Wheels

Class

Element Object

System

Car

Vehicle

®

Object Architecture

Program Objects

• People often liken them to
a highly specialized program
–They are not!

• There is an architecture

Object Architecture

• Three concepts of access
– Public – the interface

- Can be accessed by anyone
– Protected – the implementation

- Is public to a subclass
– Private – the implementation

- Can be accessed only by a
member of the class

Ignorance Is Bliss

• Data representation
• Implementation
• Relationships

Object Architecture

• Requested Behavior
• Support for Requested Behavior
• Data
• Requesting Behavior
• Existence Management

Requested Behavior

• The public interface
• Requests from other objects
• Member functions/methods
• Part of the rules about

the relationship of elements to
each other, and to the whole
of which they are a part

Support for Requested Behavior

• Non-public
• Carry out auxiliary tasks
• Member functions/methods
• Needed to carry out the object’s

responsibilities

Data

• Accessed functionality and
transformed into information
– Dismiss the idea of data

• Member functions/methods
– Accessing data members/variables

• Owned by the object

Requesting Behavior

• Requests to other objects
• Member functions/methods

– Accessing object reference variables
– Using references passed as argument
– Creating new objects

• Part of the rules about the relationship
of elements to each other, and to the
whole of which they are a part

Existence Management

• Necessitated by computer implementation
• Member functions/methods

– Accessing existence dependent data

Responder-Requestor Architecture

• Objects communicate through messages
– Separates requestor from implementor

• An object does something in
response to a message
– Sender requests
– Receiver implements that request

• Messages as verbs

The Control Structure

• Defined by messages – not a formal
control structure

• Responder-Requestor architecture
• Close to the natural world relationships

– Accountability stays the same
– Performance pushed down to data owner

• No one is “in charge”
– Control is immanent in the system

Good Objects

• Small, highly specialized, well defined
• Small and highly specialized member

functions/methods
• Use other objects
• Independent

®

Minimizing Dependencies

There Are Connections

• Between
– Requestors and responders
– Wholes and parts
– Superclasses and subclasses

Yet Independence Is Critical

• Limit data knowledge
• Limit implementation knowledge
• Limit relationship knowledge
• Limit responsibilities

Limit Data Knowledge

• Functionally access data as information
• Unfreeze the representation of data

– Data members/variables
– Computed data

• Make changes in representation
transparent

• Define data once
• Don’t treat data members/variables

as global

Limit Implementation Knowledge

• Encapsulate policies and procedures
• Concentrate on incremental improvement
• Control access to lower level functions
• Identify responsibility
• Implement algorithms once

Limit Relationship Knowledge

• Limit type knowledge
– Type at the highest level of abstraction

• Limit instance knowledge
– Use as few other objects as possible

Limit Responsibilities

• Decompose to single purpose objects
• Small, specialized methods/member

functions
– Treat member functions/methods as

single function/responsibility objects
• Minimize the public interface

®

How To Minimize
Dependencies

Components and Collaborators

• Let you hide code as well as data
– Composites and components

- Objects decomposed into parts
– Requestor-Responder

- Objects provide services

Classes

• Limit code knowledge
through inheritance

• Limit object knowledge
through polymorphism

Optimizing Class Use

• The design context affects reuse
• Follow the rules of good objects

Optimize Hierarchies

• Subclass abstract classes or
special case concrete classes

• Class hierarchies should be
appropriately
– Deep or shallow
– Narrow or wide

Wide Hierarchies

• May indicate we confuse
values of variables with types

• In personnel planning –
a department variable

A/R A/P Payroll

Clerk

Deep Hierarchies

• May indicate confused abstraction
• Excessive overriding?

Employee

Hourly Employee

Part Time Hourly

Part Time Salaried

Class Membership

• Something is part of a class
– If it shares key features of that class

- We classify a rose as a flower
• Categorization

– Derived
– Associate
– Prototype

Inheritance

• Derived
– Type extension - design
– To implement details

and encapsulate
• Prototype

– Reuse objects across models -
implementation

– To build a new base

Overriding In Type Extension

• Derived
– Limit overrides

- Common method holders
necessary for polymorphism

- Use the inherited
function/method and
add functionality

– Subclasses should be able to
be used in place of superclasses

Overriding In New Bases

• Prototype
– More complete overriding may

be necessary

Multiple Base Classes

• Used to build new types
(base classes) from primitives
– You are not building a derived type
– Private inheritance

• Uses the multiple inheritance
mechanism, but is not “inheritance”

Multiple Inheritance

• Four criteria for deriving from a second class
– There is an “is-a” relationship
– It crosses branches in the hierarchy

- Collectable cars
– Behavior must be added or modified
– Polymorphism is desired

- Treat Packard as car or collectable

Multiple Inheritance

• Can result in a “write only”
class structures

• Limit additional base classes to
“multi-type” functionality
– The idea of mixin classes

- Optional functionality

®

 Object-Based Software
Architecture

Building Applications

There Are Types of Objects

• We group objects together to achieve
the same benefits we get from objects
– Maintainability
– Enhanceability
– Extensibility

Program Objects Have Rules

• Their relationship to each other
• Their relationship to the whole of

which they are a part
• The idea of independence

– Limit data knowledge
– Limit implementation knowledge
– Limit relationship knowledge
– Limit responsibilities

Composite Relationships

• Composites “inherit” these rules
• The relationship between

– Content
– User interface
– Platform

Object-Based Application
Architecture

Execution Model

Program Model

Application
Content

Platform

User Interface

Platform
Model

User
Interface

Model

Simulation
Model

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

INTERFACE

C
O
N
T
A
I
N
E
R

®

The power to be your best

